This policy supports the White Rose Maths scheme (Reception - Year 6) throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children using concrete, pictorial, and abstract representations.

Concrete representation- a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.

Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.

Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.
It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Our long-term aim is for children to be able to select an efficient method (whether this be mental or written) that is appropriate for a given task. They will do this by always asking themselves:
'Can I do this in my head?'
'Can I do this in my head using drawings or jottings?'
'Do I need to use a pencil and paper procedure?'

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \frac{5}{9} \\ & \frac{5}{\frac{5}{0}} \\ & \frac{0}{8} \end{aligned}$	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10 using ten frame.	Adding three single digits. Use of base 10 to combine two numbers.	Column methodregrouping. Using place value counters (up to 3 digits).	Column methodregrouping. (up to 4 digits)	Column methodregrouping. Use of place value counters for adding decimals.	Column methodregrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimalswith the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays $2 \mathrm{~d} \times 1 \mathrm{~d}$ using base 10	Column multiplicationintroduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{2} \\ & \hline \end{aligned}$	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3 , how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

	Concrete	Pictorial	Abstract
Combining two parts to make a whole: Part Whole Model	use other resources too e.g. shells, teddy bears, cars	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too. Use pictures to add two numbers together as a group or in a bar.	$4+3=7$ Four is a part, 3 is a part and the whole is seven. Ensure calculations are also done where the answer is in different places. E.g \square $=4+3$
Starting at the bigger number and counting on. Counting on using number lines	Use cubes or numicon. $18+5=23$ \qquad	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? $4+2$

(Adapted from White Rose Maths)

Regrouping to make 10 using ten frame. This is an essential skill for column addition later.	Using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
Adding three single digits.	Using ten frames and counters/cubes or using numicon. $7+3+2=\quad \text { leads to } 10+2=$	Children to draw the ten frame and counters/cubes. $7+3+2=12$	Combine the two numbers that make or bridge 10 and then add on the third number. $\begin{aligned} \frac{(4)+7+6}{10} & =10+7 \\ & =17 \end{aligned}$
Use of base 10 to combine two numbers. TO + O using base 10.	Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$

(Adapted from White Rose Maths)

Column methodregrouping. e.g. TO + TO using base 10 .	Continue to develop understanding of partitioning and place value using Dienes or Place Value counters. $36+25$	Children to represent the base 10 in a place value chart. 6 1	Partitioning $\begin{aligned} 36+25 & =30+6 \\ & =\frac{20+5}{50+11=61} \end{aligned}$ Formal Method $\begin{array}{r} 1 \\ 36 \\ +25 \\ \hline \underline{61} \\ \hline \end{array}$
Column methodregrouping. e.g. Use of place value counters to add HTO + TO, HTO + HTO etc. Use of place value counters for adding decimals.	When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred. $243+368$	Children to represent the counters in a place value chart, circling when they make an exchange.	Partitioning if needed $\begin{aligned} 243+368= & 200+40+3 \\ & \frac{300+60+8}{500+100+11=611} \end{aligned}$ Formal Method $\begin{array}{r} 11 \\ 243 \\ +368 \\ \hline \underline{611} \\ \hline \end{array}$

Conceptual variation; different ways to ask children to solve $21+34$

21	34

Word problems:	
In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?	21
$21+34=55$. Prove it	$21+34=$

$+$

Missing digit problems:

$10 \mathbf{s}$	1s
	0
	$?$
$?$	5

(Adapted from White Rose Maths)

Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

(Adapted from White Rose Maths)

Finding the difference	Using cubes, Numicon or Cuisenaire rods, other objects can also be used. Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why 9-6=8-5=7 - 4 have the same difference.
Part Whole model	Link to addition. Use PPW model to model the inverse.	Children to draw the PPW model to illustrate what they need to calculate.	Move to using numbers within the PPW model.
Making 10 using the 10 frame	Using ten frames. $14-5$	Children to present the ten frame pictorially and discuss what they did to make 10. $14-5$	Children to show how they can make 10 by partitioning the subtraction.

(Adapted from White Rose Maths)

Conceptual variation; different ways to ask children to solve 391-186

Raj spent £391, Timmy spent £186.	$\square=391-186$	Missing digit calculations
How much more did Raj spend?		$3 \quad 9$
Calculate the difference between	391	- $\square 6$
391 and 186.	-186	05
	What is 186 less than 391?	

Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

	Concrete	Pictorial	Abstract
Recognising and making equal groups Repeated grouping/repeated addition	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Children draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.

(Adapted from White Rose Maths)

Counting in multiples. Number lines to show repeated groups-	3×4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$
Use arrays to illustrate commutativity	Counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

(Adapted from White Rose Maths)

$2 d \times 1 d$ using base 10 Partition to multiply	Using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 10 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used
Formal column method	with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding. Expanded method $\begin{aligned} & 3 \times 23= 3 \times 20=60 \\ & 3 \times 3=9 \\ & 60+9=69 \end{aligned}$ Formal written method $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \end{array}$

Conceptual variation: different ways to ask children to solve 6×23

(Adapted from White Rose Maths)

Repeated subtraction	$6 \div 2$	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.
$2 d \div 1 d$ with remainders	Using lollipop sticks. $13 \div 4$ Use of lollipop sticks to form wholessquares are made because we are dividing by 4. \square There are 3 whole squares, with 1 left over.	Children to represent the lollipop sticks pictorially. There are 3 whole squares, with 1 left over.	$13 \div 4-3$ remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over'

(Adapted from White Rose Maths)

Using place value counters
$2544 \div 12$

We can group 24 hundreds into groups of 12 which leaves | 02 |
| :---: |
| 22 |
| 24 |
| 24 |
| 1 |

After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12 , which leaves 2 tens.

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

What is the calculation?
What is the answer?

